Active mixing with Quincke rollers

Is the Institute of Science and Technology Austria

Cécile Clavaud, Scott Waitukaitis

The Quincke effect, from rotors to rollers

Quincke effect: spontaneous rotation of dielectric objects immersed in a conductive liquid in the presence of a DC field E.

Discontinuity between dielectric constants and conductivities:

$$\varepsilon_p \neq \varepsilon_l, \ \sigma_p \neq \sigma_l \implies \text{accumulation of charges at the interface, with timescale } \tau = \frac{\varepsilon_p + 2\varepsilon_l}{\sigma_p + 2\sigma_l}$$
 (p: particles, l: liquid) \implies electric dipole $\mathbf{P}_{\mathbf{Q}}$, antiparallel to the field.

Above threshold E_Q : net dipole dominated by $\mathbf{P}_{\mathbf{Q}} \leadsto \text{unstable situation}$

→ electric torque, balanced with a viscous torque.

Equilibrium state: rotation with finite speed $\Omega = \frac{1}{\tau} \sqrt{\frac{E^2}{E_O^2}} - 1$

- conductive liquid
- dielectric solid

Quincke mixing at the microscopic scale

Mixing: shear + diffusion. Quincke rollers can reach $v \sim 1 \,\mathrm{mm\,s^{-1}}$: fast shear at small length scales. $Re \sim 10^{-3}$: mixing is difficult due to flow reversibility. Particles: break reversibility.

top view side view conductive liquid $2R \sim 3 \,\mathrm{mm}$ dyed conductive liquid • Quincke rollers surface packing fraction $\phi \sim 0.1\%$ (gaseous monolayer of particles)

1) concentration profile: interface crossing

2) average concentration in left or right half cell $\langle c \rangle_{
m right}/\langle c \rangle_{
m tot}$ $\langle c \rangle_{\mathrm{left}} / \langle c \rangle_{\mathrm{tot}}$ E or ϕ increases E or ϕ increases $2a \sim 5 \, \mu \text{m}$

Order of magnitude: without shear: $t_{\rm diff} \sim R^2/D \sim 35\,\rm min$. With particles: $t_{\rm mix} \sim \pi a/\phi v \sim 8\,\rm s$.

Preliminary results and difficulties

Reproducible Quincke effect

Quincke effect: highly sensitive to system characteristics. Problems:

- E_Q depends on ε_p , ε_l , σ_p , σ_l , η , and the liquid's water content,
- dyed versus uncoloured liquid: different ε_l and σ_l , maybe different water content,
- $\sigma_l^{\text{dyed}} \neq \sigma_l^{\text{uncoloured}} \rightsquigarrow \text{electrohydrodynamical instabilities.}$

Need to conduct careful liquid formulation to match dyed and uncoloured liquids.